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1 Introduction

This paper provides a novel semantic analysis of the gradability of adjectives
of the absolute class within a delineation (i.e. comparison-class-based) semantic
framework (first presented in [8]). It has been long observed that the syntac-
tic category of bare adjective phrases can be divided into two principle classes:
scalar (or gradable) vs non-scalar (non-gradable). The principle test for scalar-
ity of an adjective P is the possibility of P to appear (without coercion) in
the explicit comparative construction. Thus, we find a first distinction between
adjectives like tall, expensive, straight, empty, and dry on the one hand (ok:
taller, more expensive, straighter, emptier, drier) and atomic, pregnant, and ge-
ographical on the other (?more atomic, ?more pregnant, ?more geographical).
It has been argued by many authors that the class of scalar adjectives is fur-
ther decomposed into two principle subclasses: relative adjectives (henceforth
RAs: ex. tall, short, expensive, intelligent) and absolute adjectives (henceforth
AAs: ex. empty, straight, dry, clean). Although RAs and AAs behave differently
in many syntactic and semantic constructions, the fundamental difference be-
tween these two classes of adjectives is generally taken to be that members of
the former class have context-sensitive semantic denotations (denotations that
vary depending on contextually given comparison classes); whereas, members of
the latter class have semantic denotations that are independent of context (cf.
[16], [7], [12]). As discussed in [13], this empirical observation raises a puzzle for
the delineation approach, since, as will be outlined below, in this framework,
the scales associated with adjectival constituents are derived through looking at
how their semantic denotations vary across comparison classes. The inability of
comparison-class-based frameworks to treat the difference between absolute and
relative adjectives has been taken (for example by [6]) to be a major argument
against a delineation semantics for scalar adjectives and in favour of a semantics
in which degrees and scales are primitives.

In this paper, I present a new solution to the puzzle of the gradability of AAs
within the delineation approach, one that takes into account the empirical obser-
vation that these constituents can be used imprecisely or vaguely (cf. [10], [11],
[6], a.o.). I show that by integrating a simplified version of [8]’s comparison-class-
based logical system with the similarity-based multi-valued logical framework
proposed by [4] to model the vagueness/imprecision associated with these predi-



cates, we can arrive at new logical framework that can treat the absolute/relative
distinction without degrees in the ontology.

The paper is organized as follows: in section 2, I present the delineation
framework for the semantic analysis of gradable predicates. Then, in section 3,
I present the main ways in which adjectives like tall differ from adjectives like
empty, and I argue that the latter adjectives challenge the comparison-class-
based approach. In section 4, I present the empirical observation that absolute
adjectives are subject to the phenomenon of vagueness/imprecision, and I in-
troduce the multi-valued logical system that I will be employing to model this
phenomenon, [4]’s Tolerant, Classical, Strict (TCS). Finally, in section 5, I give
my analysis of the gradability of AAs within a delineation extension of TCS. In
particular, I propose that the non-trivial scales associated with AAs are derived
through looking at comparison-class-based variation in predicate-relative simi-
larity/indifference relations, and I show how these relations can be constructed
within this new approach using methods in the same vein as [1] and [14]. The
new framework is formally laid out (with the proofs of the main results of the
paper) in the appendix.

2 Delineation Semantics

Delineation semantics is a framework for analyzing the semantics of gradable
expressions that takes the observation that they are context sensitive to be their
key feature. A delineation approach to the semantics of positive and comparative
constructions was first proposed by [8], and has been further developed by many
authors in the past 30 years. In this framework, scalar adjectives denote sets
of individuals and, furthermore, they are evaluated with respect to comparison
classes, i.e. subsets of the domain D. The basic idea is that the extension of a
gradable predicate can change depending on the set of individuals that it is being
compared with. In other words, the semantic denotation of the positive form of
the scalar predicate (i.e. tall) can be assigned a different set of individuals in
different comparison classes.

Definition 1. CC-relativized interpretation of predicates (informal).

1. For a scalar adjective P and a contextually given comparison class X ⊆ D,

(1) JPKX ⊆ X.

2. For an individual a, a scalar adjective P , and a contextually given compari-
son class X ⊆ D,

(2) Ja is PKX =


1 if JaK ∈ JP KX
0 if JaK ∈ X − JP KX
i otherwise

Unlike degree semantics (cf. [6]), delineation semantics takes the positive form
as basic and derives the semantics of the comparative form from quantification



over comparison classes. Informally, John is taller than Mary is true just in case
there is some comparison class with respect to which John counts as tall and
Mary counts as not tall.

Definition 2. Semantics for the comparative (informal). For two indi-
viduals a, b and a scalar adjective P , Ja is P-er than bK = 1 iff a >P b, where
>P is defined as:

(3) x >P y iff there is some comparison class X such that x ∈ JP KX and
y /∈ JP KX .

As it stands, the analysis of the comparative in definition 2 is very weak
and allows some very strange and un-comparative-like relations1, if we do not
say anything about how the extensions of gradable predicates can change in
different comparison classes (CCs). A solution to this problem involves imposing
some constraints on how predicates like tall can be applied in different CCs.
In this work, I will adopt the set of constraints on the application of gradable
predicates presented in [1] and [2]. Van Benthem proposes three axioms governing
the behaviour of individuals across comparison classes. They are the following
(presented in my notation):

For x, y ∈ D and X ⊆ D such that x ∈ JPKX and y /∈ JPKX ,

(4) No Reversal (NR:) There is no X ′ ⊆ D such that y ∈ JPKX′ and
x /∈ JPKX′ .

(5) Upward difference (UD): For all X ′, if X ⊆ X ′, then there is some
z, z′ : z ∈ JPKX′ and z′ /∈ JPKX′ .

(6) Downward difference (DD): For all X ′, if X ′ ⊆ X and x, y ∈ X ′, then
there is some z, z′ : z ∈ JPKX′ and z′ /∈ JPKX′ .

No Reversal states that if x >P y, there is no X ′ such that y is in JP KX′ , but
x is not. Upward Difference states that if, in the comparison class X, there
is a P/not P contrast, then a P/not P contrast is preserved in every larger
CC. Finally, Downward Difference says that if in some comparison class X,
there is a P/not P contrast involving x and y, then there remains a contrast in
every smaller CC that contains both x and y. van Benthem shows that these
axioms give rise to strict weak orders: irreflexive, transitive and almost connected
relations2.

1 For example, suppose in the CC {a, b}, a ∈ JP K{a,b} and b /∈ JP K{a,b}. So a >P b. And
suppose moreover that, in the larger CC {a, b, c}, b ∈ JP K{a,b,c} and a /∈ JP K{a,b,c}.
So b >P a. But clearly, natural language comparatives do not work like this: If John
is {taller, fatter, wider. . . } than Mary, Mary cannot also be {taller, fatter, wider. . . }
than John. In other words, >P must be asymmetric.

2 The definitions of irreflexivity, transitivity and almost connectedness are given below.

Definition 3. Irreflexivity. A relation > is irreflexive iff there is no x ∈ D such that
x > x.



Definition 6. Strict weak order. A relation > is a strict weak order just in
case > is irreflexive, transitive, and almost connected.

As discussed in [8], [2] and [14], strict weak orders (also known as ordinal
scales in measurement theory) intuitively correspond to the types of relations
expressed by many kinds of comparative constructions3. Thus, the theorem in 1
is an important result in the semantic analysis of comparatives, and it shows that
scales associated with gradable predicates can be constructed from the context-
sensitivity of the positive form and certain axioms governing the application of
the predicate across different contexts.

Theorem 1. Strict Weak Order. For all P , >P is a strict weak order.

Proof. [1]; [2], p. 116. ut

This analysis seems appropriate for relative predicates like tall and short ;
however, as we will see in the next section, it does not capture the certain
aspects of the meaning of absolute predicates like empty and straight.

3 The Absolute/Relative Distinction

Following many authors, I take the principle way in which AAs like empty and
straight differ from RAs like tall and fat is that AAs are not context-sensitive
in the same way that RAs are. One test that shows this is the definite descrip-
tion test. As observed by [6] and [15] a.o., adjectives like tall and empty differ
in whether they can ‘shift’ their thresholds (i.e. criteria of application) to dis-
tinguish between two individuals in a two-element comparison class when they
appear in a definite description. For example, suppose there are two containers
(A and B), and neither of them are particularly tall; however, A is (noticeably)
taller than B. In this situation, if someone asks me (7-a), then it is very clear that
I should pass A. Now suppose that container A has less liquid than container
B, but neither container is particularly close to being completely empty. In this
situation, unlike what we saw with tall, (7-b) is infelicitous.

(7) a. Pass me the tall one.

Definition 4. Transitivity. A relation > is transitive iff for all x, y, z ∈ D, if x > y
and y > z, then x > z.

Definition 5. Almost Connectedness. A relation > is almost connected iff for all
x, y ∈ D, if x > y, then for all z ∈ D, either x > z or z > y.

3 For example, one cannot be taller than oneself; therefore >tall should be irreflexive.
Also, if John is taller than Mary, and Mary is taller than Peter, then we know that
John is also taller than Peter. So >tall should be transitive. Finally, suppose John is
taller than Mary. Now consider Peter. Either Peter is taller than Mary (same height
as John or taller) or he is shorter than John (same height as Mary or shorter).
Therefore, >tall should be almost connected.



b. Pass me the empty one.

In other words, unlike RAs, AAs cannot change their criteria of application
to distinguish between objects that lie in the middle of their associated scale.
Using this test, we can now make the argument that adjectives like full, straight,
and bald are absolute, since (8-a) is infelicitous if neither object is (close to)
completely full/straight/bald. Likewise, we can make the argument that dirty,
wet, and bent are also absolute, since (8-b) is infelicitous when comparing two
objects that are at the middle of the dirtiness/wetness/curvature scale (i.e. both
of them are dirty/wet/bent).

(8) Absolute Adjectives

a. Pass me the full/straight/bald one.
b. Pass me the dirty/wet/bent one.

Furthermore, we can make the argument that long, expensive, and even colour
adjectives like blue are relative, since the (9) is felicitous when comparing two
objects when both or neither are particularly long/expensive/blue4.

(9) Relative Adjectives
Pass me the long/expensive/blue one.

How can we capture this distinction in a delineation framework? An idea
that has been present in the literature for a long time, and has recently been
incarnated in, for example, [7] and [12], is that unlike tall or long that have a
context sensitive meaning, adjectives like straight, empty or bald are not context
sensitive (hence the term absolute adjective). That is, in order to know who the
bald people are or which rooms are empty, we do not need compare them to
a certain group of other individuals, we just need to look at their properties.
To incorporate this idea into the delineation approach, I propose (following an
idea in [14]) that, in a semantic framework based on comparison classes, what it
means to be non-context-sensitive is to have your denotation be invariant across
classes. Thus, for an absolute adjective Q and a comparison class X, it suffices
to look at what the extension of Q is in the maximal CC, the domain D, in order
to know what JQKX is. I therefore propose that a different axiom set governs the
semantic interpretation of the members of the absolute class that does not apply
to the relative class: the singleton set containing the absolute adjective axiom.

(10) Absolute Adjective Axiom (AAA).
If Q ∈ AA, then for all X ⊂ D and x ∈ X, x ∈ JQKX iff x ∈ JQKD.

In other words, the semantic denotation of an absolute adjective is set with
respect to the total domain, and then, by the AAA, the interpretation of Q in
D is replicated in each smaller comparison class. The AAA is very powerful:
as shown by theorem 2, the scales that the semantic denotations of absolute

4 For an example of the use of a colour adjective like blue to distinguish between two
not particularly blue objects, see [5].



constituents give rise to are very small, essentially trivial. In particular, the
relations denoted by the absolute and non-scalar comparative (>Q) do not allow
for the predicate to distinguish three distinct individuals.

Theorem 2. If Q ∈ AA, then there is no CC model M such that, for distinct
x, y, z ∈ D, x >Q y >Q z.

Proof. Let Q ∈ AA (so it satisfies the AAA). Suppose for a contradiction that
there is some CC model M = 〈D,CC, J·K〉 such that x, y, z are distinct members
of D, and x >Q y >Q z. Then, by definition 2, there is some X ∈ CC such
that x ∈ JQKX and y /∈ JQKX . Therefore, by the AAA, y /∈ JQKD. Furthermore,
since y >Q z, there is some X ′ ∈ CC such that y ∈ JQKX′ and z /∈ JQKX′ . Since
y ∈ JQKX′ , by the AAA, y ∈ JQKD. ⊥ So there is no CC model M such that, for
distinct x, y, z ∈ D, x >Q y >Q z. ut

Absolute adjectives thus raise a puzzle for delineation analyses:

(11) The Puzzle of Absolute Adjectives:
If AAs have non-context-sensitive semantic denotations, how can they
be gradable?

In the rest of the paper, I will provide a solution to this puzzle.

4 Vagueness/Imprecision with AAs

Of course, saying that adjectives like empty, bald, and straight are not at all
context-sensitive is clearly false. As observed by very many authors (ex. [16],
[10], [11], [7], [6] a.o.), the criteria for applying an absolute adjective can vary
depending on context, as exemplified in (12).

(12) a. Only two people came to opening night; the theatre was empty.
b. Two people didn’t evacuate; the theatre wasn’t empty when they

started fumigating.

Rather than being attributed directly to the context-sensitivity of their semantic
denotation, the contextual variation in the application of absolute predicates is
generally attributed to something that is variably called “imprecision”, “loose
talk” or “vagueness”, among other things. I therefore propose that the context-
sensitivity that allows for the construction of non-trivial scales is not semantic,
as in the case of relative adjectives (as outlined in section 2), but pragmatic:
although the semantic denotation of an absolute predicate does not vary across
comparison classes, its denotation on its imprecise use does.

As mentioned in the introduction, the approach that I will adopt to model the
effects of vagueness/imprecision is [4]’s Tolerant, Classical, Strict (TCS). This
system was developed as a way to preserve the intuition that vague and imprecise



predicates5 are tolerant (i.e. satisfy ∀x∀y[P (x) & x ∼P y → P (y)], where ∼P

is a ‘little by little’ or indifference relation for a predicate P ), without running
into the Sorites paradox6. [4] adopt a non-classical logical framework with three
notions of satisfaction: classical satisfaction, tolerant satisfaction, and its dual,
strict satisfaction. Formulas are tolerantly/strictly satisfied based on classical
truth and predicate-relative, possibly non-transitive indifference relations. For a
given predicate P , an indifference relation, ∼P , relates those individuals that are
viewed as sufficiently similar with respect to P . For example, for the predicate
empty,∼empty would be something like the relation “differ by a number of objects
that is irrelevant for our purposes/contain roughly the same number of objects”.
Since these relations are given by context, we assume that they are part of the
model. I give the definition of the indifference relations (within a comparison
class-based framework) below.

Definition 7. CC-relativized indifference relations. For all scalar adjec-
tives P and comparison classes X ⊆ D,

(13) ∼X
P is a binary relation on the elements of X that is reflexive and sym-

metric (but not necessarily transitive).

In this framework, we say that Room A is empty is tolerantly true just in
case Room A contains a number of objects that do not cause us to make a
distinction between it and a completely empty room in the context. For the pur-
poses of the analyses in this paper, I will suppose that classical satisfaction and
classical denotations correspond to regular semantic satisfaction and semantic
denotations, while tolerant and strict satisfaction and denotations correspond
to pragmatic notions7. The three notions of satisfaction are defined within a
comparison-class-based system8 as shown below.

Definition 8. Classical (JKc), tolerant (JKt), and strict (JKs) interpreta-
tion of predicates. For all scalar adjectives P and X ⊆ D,

1. JP KcX ⊆ X.
2. JP KtX = {x : ∃d ∼X

P x and d ∈ JP KcX}.
5 The system in [4] was proposed to model the puzzling properties of vague language

with relative predicates like tall ; however, I suggest that the results in this paper
show that it has a natural application to modelling similar effects with absolute
adjectives.

6 Note that on their imprecise use, absolute predicates like bald and empty give rise
to Soritical-type reasoning: how many hairs must someone have before they stop
being considered bald? How many seats must be filled before a theatre is no longer
considered empty?

7 As such, my interpretation of the framework bares many similarities with [9]’s Prag-
matic Halos approach to modelling “pragmatic slack” or “loose talk”.

8 Note that, in his 1980 paper, Klein adopts a supervaluationist account of the vague-
ness of scalar adjectives. Thus, the integration of Klein’s basic semantics for the
comparative construction with a similarity-based account of vagueness is a depar-
ture from the system presented in [8].



3. JP KsX = {x : ∀d ∼X
P x, d ∈ JP KcX}.

Definition 9. Classical, tolerant, and strict satisfaction. For all individ-
uals a, scalar predicates P , and comparison classes X ⊆ D,

1. Ja is PKcX =


1 if JaK ∈ JP KcX
0 if JaK ∈ X − JP KcX
i otherwise

2. Ja is PKtX =


1 if JaK ∈ JP KtX
0 if JaK ∈ X − JP KtX
i otherwise

3. Ja is PKsX =


1 if JaK ∈ JP KsX
0 if JaK ∈ X − JP KsX
i otherwise

The definitions of the tolerant and strict comparative relations are parallel
to the classical comparative (definition 2).

Definition 10. Classical/tolerant/strict comparative (informal). For two

individuals a, b and a scalar adjective P , Ja is P-er than bKt/c/s = 1 iff a >
t/c/s
P b,

where >
t/c/s
P is defined as:

(14) x >
t/c/s
P y iff there is some comparison class X such that x ∈ JP Kt/c/sX

and y /∈ JP Kt/c/sX .

The precise definition of TCS, set within a comparison-class-based approach
to the semantics of scalar terms, is given in the appendix.

5 Analysis of Absolute Adjectives

In order to account for how AAs can have, at the same time, a semantic de-
notation that is constant across CCs, but at the same time be associated with
non-trivial scales, I propose that what can vary across CCs are the indifference
relations i.e., the ∼X

Q s. For example, if I compare Homer Simpson, who has ex-
actly two hairs, directly with Yul Brynner (who has zero hairs), the two would
not be considered indifferent with respect to baldness (Homer has hair!). How-
ever, if I add Marge Simpson into the comparison class (she has a very large
hairdo), then Yul and Homer start looking much more similar, when it comes to
baldness. Thus, I propose, it should be possible to order individuals with respect
to how close to being completely bald (or empty or straight) they are by look-
ing at in which comparison classes they are considered indifferent to completely
bald/empty/straight individuals9.

9 The idea is conceptually similar in some sense (although extremely different in its
execution) to a suggestion made by [12], with respect to how an adjective like empty
can be both absolute and gradable.



In what follows, I present a set of axioms that constrain indifference relations
between individuals across comparison classes. Recall that I proposed that, un-
like relative adjectives which are only subject to van Benthem’s axioms (NR,
UD, and DD), absolute adjectives are subject to the AAA. Then, in the spirit of
[1] and [13], I will show that these axioms will allow us to construct non-trivial
strict weak orders from the tolerant meaning of absolute predicates10.

5.1 Pragmatic Axiom Set

I propose the following axioms to constrain indifference relations11.

(15) Tolerant No Skipping (T-NS): For an AA Q, X ∈ P(D) and x, y ∈
X, if x ∼X

Q y and there is some z ∈ X such that x ≥t
Q z ≥t

Q y, then

x ∼X
Q z.

Tolerant No Skipping says that, if person A is indistinguishable from person
B, and there’s a person C lying in between persons A and B on the relevant
tolerant scale, then A and C (the greater two of {A,B,C}) are also indistin-
guishable. As discussed in the appendix, T-NS performs a very similar function
to van Benthem’s No Reversal.

We now have two axioms that talk about how indifference relations can
change across comparison classes. I call these the granularity axioms.

(16) Granularity 1 (G1): For an AA Q, X ∈ P(D), and x, y ∈ X, if
x ∼X

Q y, then for all X ′ ⊆ D : X ⊆ X ′, x ∼X′

Q y.

G1 says that if person A and person B are indistinguishable in comparison
class X, then they are indistinguishable in all supersets of X. This is meant to

10 For lack of space, I will only address the analysis of so-called total or universal AAs
like empty, bald, and straight. However, the analysis of partial/existential AAs like
dirty and wet is essentially the dual of the analysis of total AAs, with non-trivial
scales being constructed out of strict denotations instead of tolerant ones. See [3] for
discussion.

11 One of the axioms (T-NS) makes reference to a ‘tolerantly greater than or equal
relation’ (≥t

Q): We first define an equivalence relation ≈P :

Definition 11. Tolerantly Equivalent. (≈t) For a predicate Q and a, b ∈ D,

(i) a ≈t
Q b iff a 6>t

Q b and b 6>t
Q a.

Now we define ≥t:

Definition 12. Tolerantly greater than or equal. (≥t) For a, b ∈ D,

(ii) a ≥t
Q b iff a >t

Q b or a ≈t
Q b.



reflect the fact that the larger the domain is (i.e. the larger the comparison class
is), the more things can cluster together12.

(17) Granularity 2 (G2): For an AA Q, X,X ′ ⊆ D, and x, y ∈ X, if
X ⊂ X ′ and x 6∼X

Q y and x ∼X′

Q y, then ∃z ∈ X ′ −X : x 6∼X′

Q z.

G2 says that, if person A and person B are distinguishable in one CC, X,
and then there’s another CC, X’, in which they are indistinguishable, then there
is some person C in X’-X that is distinguishable from person A. This axiom is
similar in spirit to van Benthem’s Upward Difference in that it ensures that, if
there is a contrast/distinction in one comparison class, the existence of contrast
is maintained in all the larger CCs.

The final axiom that we need is Minimal Difference:

(18) Minimal Difference (MD): For an AA Q and x, y ∈ D, if x >c
Q y,

then x 6∼{x,y}
Q y.

Minimal Difference says that, if, at the finest level of granularity, you
would make a classical distinction between two individuals, then they are not
indistinguishable at that level of granularity. MD is similar in spirit to van Ben-
them’s Downward Difference because it allows us to preserve contrasts down to
the smallest comparison classes.

With these axioms, we can prove the main result of the paper (which is
proved in the appendix):

(19) Theorem 3. If Q is an absolute adjective, then >t
Q is a strict weak

order.

6 Conclusion

In this paper, I gave a new analysis of the semantics and pragmatics of ab-
solute adjectives, and, in particular, I addressed the question of how AAs can
have a non-context-sensitive semantic denotation but still be gradable with a
delineation framework. I showed that the scales (i.e. strict weak orders) that are
associated with absolute predicates can be derived in within the multi-valued
delineation TCS system from certain intuitive statements about how individu-
als can and cannot be indifferent across comparison classes. Thus, I argue that
the puzzles raised by absolute adjectives for the delineation approach can be
solved, provided that we have an appropriate framework to treat vagueness and
imprecision.
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7 Appendix: Framework and Proofs

7.1 The Framework: Delineation TCS

Language

Definition 13. Vocabulary. The vocabulary consists of the following expres-
sions:

1. A series of individual constants: a1, a2, a3 . . .
2. A series of individual variables: x1, x2, x3 . . .
3. Two series of unary predicate symbols:

– Relative scalar adjectives: P1, P2, P3 . . .
– Absolute scalar adjectives: Q1, Q2, Q3 . . .

4. For every unary predicate symbol P , there is a binary predicate >P .
5. Quantifiers and connectives ∀, ∨ and ¬, plus parentheses.

Definition 14. Syntax.

1. Variables and constants (and nothing else) are terms.
2. If t is a term and P is a predicate symbol, then P (t) is a well-formed formula

(wff).
3. If t1 and t2 are terms and P is a predicate symbol, then t1 >P t2 is a wff.
4. For any variable x, if φ and ψ are wffs, then ¬φ, φ ∨ ψ, and ∀xφ are wffs.
5. Nothing else is a wff.



Semantics

Definition 15. C(lassical)-model. A c-model is a tuple M = 〈D,m〉 where D
is a non-empty domain of individuals, and m is a function from pairs consisting
of a member of the non-logical vocabulary and a comparison class (a subset of
the domain) satisfying:

– For each individual constant a1, m(a1) ∈ D.
– For each X ∈ P(D) and for each predicate P , m(P,X) ⊆ X.

Definition 16. T(olerant)-model. A t-model is a tuple M = 〈D,m,∼〉,
where 〈D,m〉 is a model and ∼ is a function from predicate/comparison class
pairs such that:

– For all P and all X ∈ P(D), ∼X
P is a binary relation on X that is reflexive,

symmetric, but not necessarily transitive.

Definition 17. Assignment. An assignment for a c/t-model M is a function
g : {xn : n ∈ N} → D (from the set of variables to the domain D).

Definition 18. Interpretation. An interpretation J·KM,g is a pair 〈M, g〉, where
M is a t-model, and g is an assignment.

Definition 19. Interpretation of terms (J·KM,g). For a model M , an assign-
ment g,

1. If x1 is a variable, Jx1KM,g = g(x1).
2. If a1 is a constant, Ja1KM,g = m(a1).

In what follows, for an interpretation J·KM,g, a variable x1, and a constant
a1, let g[a1/x1] be the assignment for M which maps x1 to a1, but agrees with
g on all variables that are distinct from x1.

Definition 20. Classical Satisfaction (J·Kc). For all interpretations J·KM,g,
all X ∈ P(D), all formulas φ, ψ, all predicates P , and all terms t1, t2,

1. JP (t1)KcM,g,X =


1 if Jt1KM,g ∈ m(P,X)

0 if Jt1KM,g ∈ X −m(P,X)

i otherwise

2. Jt1 >P t2KcM,g,X =

{
1 if there is some X ′ ⊆ D : JP (t1)KcM,g,X′ = 1 and JP (t2)KcM,g,X′ = 0

0 otherwise

3. J¬φKcM,g,X =


1 if JφKcM,g,X = 0

0 if JφKcM,g,X = 1

i otherwise

4. Jφ ∨ ψKcM,g,X =


1 if JφKcM,g,X = 1 or JψKcM,g,X = 1

0 if JφKcM,g,X = JψKcM,g,X = 0

i otherwise



5. J∀x1φKcM,g,X =


1 if for every a1 ∈ X, JφKcM,g[a1/x1],X

= 1

0 if for some a1 ∈ X, JφKcM,g[a1/x1],X
= 0

i otherwise

Definition 21. Tolerant Satisfaction(J·Kt). For all interpretations J·KM,g, all
X ∈ P(D), all formulas φ, ψ, all predicates P , and all terms t1, t2,

1. JP (t1)KtM,g,X =


1 if there is some a1 ∼X

P Jt1KM,g : JP (a1)KcM,g,X = 1

0 if Jt1KM,g ∈ X, and there is no a1 ∈ X : a1 ∼X
P Jt1KM,g

i otherwise

2. Jt1 >P t2KtM,g,X =

{
1 if there is some X ′ ⊆ D : JP (t1)KtM,g,X′ = 1 and JP (t2)KtM,g,X′ = 0

0 otherwise

3. J¬φKtM,g,X =


1 if JφKsM,g,X = 0

0 if JφKsM,g,X = 1

i otherwise

4. Jφ ∨ ψKtM,g,X =


1 if JφKtM,g,X = 1 or JψKtM,g,X = 1

0 if JφKtM,g,X = JψKtM,g,X = 0

i otherwise

5. J∀x1φKtM,g,X =


1 if for every a1 ∈ X, JφKtM,g[a1/x1],X

= 1

0 if for some a1 ∈ X, JφKtM,g[a1/x1],X
= 0

i otherwise

Definition 22. Strict Satisfaction(JKs). For all interpretations J·KM,g, all
X ∈ P(D), all formulas φ, ψ, all predicates P , and all terms t1, t2,

1. JP (t1)KsM,g,X =


1 if for all a1 ∼X

P Jt1KM,g : JP (a1)KcM,g,X = 1

0 if Jt1KM,g ∈ X, and there is no a1 ∈ X : a1 ∼X
P Jt1KM,g

i otherwise

2. Jt1 >P t2KsM,g,X =

{
1 if there is some X ′ ⊆ D : JP (t1)KsM,g,X′ = 1 and JP (t2)KsM,g,X′ = 0

0 otherwise

3. J¬φKsM,g,X =


1 if JφKtM,g,X = 0

0 if JφKtM,g,X = 1

i otherwise

4. Jφ ∨ ψKsM,g,X =


1 if JφKsM,g,X = 1 or JψKsM,g,X = 1

0 if JφKtM,g,X = JψKtM,g,X = 0

i otherwise

5. J∀x1φKsM,g,X =


1 if for every a1 ∈ X, JφKsM,g[a1/x1],X

= 1

0 if for some a1 ∈ X, JφKsM,g[a1/x1],X
= 0

i otherwise
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(20) Absolute Adjective Axiom (AAA): For all X ∈ P(D) and a1 ∈ X,
JQ1(a1)KcM,g,X = 1 iff JQ1(a1)KcM,g,D = 1.

(21) Tolerant No Skipping (T-NS): For an AA Q1, X ∈ P(D) and
a1, a2 ∈ X, if a1 ∼X

Q1
a2 and there is some a3 ∈ X such that Ja1 ≥Q1

a3JtM,g,X= 1 and Ja3 ≥Q1
a2KtM,g,X = 1, then a1 ∼X

Q1
a3.

(22) Granularity 1 (G1): For an AA Q1, X ∈ P(D), and a1, a2 ∈ X, if
a1 ∼X

Q1
a2, then for all X ′ ∈ P(D) : X ⊆ X ′, a1 ∼X′

Q1
a2.

(23) Granularity 2 (G2): For an AA Q1, X,X ′ ∈ P(D), and a1, a2 ∈ X, if
X ⊂ X ′ and a1 6∼X

Q1
a2 and a1 ∼X′

Q1
a2, then ∃a3 ∈ X ′ −X : a1 6∼X′

Q1
a3.

(24) Minimal Difference (MD): For an AA Q1 and a1, a2 ∈ D, if Ja1 >Q1

a2KcM,g,X = 1, then a1 6∼{x,y}
Q1

a2.

7.2 Proofs

Firstly, Minimal Difference ensures that classical absolute denotations are sub-
sets of tolerant denotations:

Lemma 1. Tolerant Subset. If Q ∈ AA, then, for all X ⊆ D, a1, a2 ∈ D, if
Ja1 >Q a2KcM,g,X , then Ja1 >Q a2KtM,g,X .

Proof. Suppose Ja1 >Q a2KcM,g,X . Then, by definition 20, there is some X ′ ⊆ D
such that JQ(a1)KcM,g,X′ = 1 and JQ(a2)KcM,g,X′ = 0. Now consider {a1, a2}. By
downward difference, JQ(a1)KcM,g,{a1,a2} = 1 and JQ(a2)KcM,g,{a1,a2} = 0. By the

definition of JKt, JQ(a1)KtM,g,{a1,a2} = 1. Furthermore, by Minimal Difference,

a1 6∼{a1,a2}
Q a2. So JQ(a2)KtM,g,{a1,a2} = 0. By definition 21, Ja1 >Q a2KtM,g,X .

ut

Secondly, with only T-No Skipping, we can prove that a version of van Ben-
tham’s No Reversal holds at the tolerant level.

Lemma 2. Tolerant No Reversal (T-NR): For X ⊆ D, and a1, a2 ∈ D if
JQ(a1)KtM,g,X = 1 and JQ(a2)KtM,g,X = 0, then there is no X ′ ⊆ D such that

JQ(a2)KtM,g,X′ = 1 and JQ(a1)KtM,g,X′ = 0.

Proof. Suppose JQ(a1)KtM,g,X = 1 and JQ(a2)KtM,g,X = 0. Suppose, for a contra-

diction that there is anX ′ ⊆ D such that JQ(a2)KtM,g,X′ = 1 and JQ(a1)KtM,g,X′ =

0. Therefore, Ja1 >Q a2KtM,g,X = 1 and Ja2 >Q a1KtM,g,X = 1. Furthermore, by

assumption and definition 21, there is some a3 ∼X
Q a1 such that JQ(a3)KcM,g,X =

1, and a3 6∼X
Q a2. Since JQ(a1)KtM,g,X′ = 0, by the AAA, JQ(a1)KcM,g,X′ = 0.

13 Tolerantly greater than or equal. (≥t) For an interpretation J·KM,g,X , a predicate
P , a1, a2 ∈ D, a1 ≥t

P a2 iff Ja1 >P a2KtM,g,X = 1 or a1 ≈t
P a2.



So Ja3 >Q a2KcM,g,X = 1. By lemma 1, Ja3 >Q a2KtM,g,X = 1, and so Ja3 >Q

a2KtM,g,X = 1 and Ja2 >Q a1KtM,g,X = 1. Since a3 ∼X
Q a1, by No Skipping,

a3 ∼X
Q a2. ⊥ ut

Using the complete axiom set {NS, G1, G2, MD}, we can show that, for all
Q ∈ AA, the tolerant comparative (>t

Q) is a strict weak order.

Lemma 3. Irreflexivity. For all X ⊆ D and a1 ∈ D, Ja1 >Q a1KtM,g,X = 0.

Proof. Since it is impossible, for any X ⊆ D, for an element to be both in
JQKtM,g,X and not in JQKtM,g,X , by definition 21, >t

Q is irreflexive. ut

Lemma 4. Transitivity. For all X ⊆ D and a1, a2, a3 ∈ D, if Ja1 >Q a2KtM,g,X =

1 and Ja2 >Q a3KtM,g,X = 1, then Ja1 >Q a3KtM,g,X = 1.

Proof. Suppose Ja1 >Q a2KtM,g,X = 1 and Ja2 >Q a3KtM,g,X = 1 to show that

Ja1 >Q a3KtM,g,X = 1. Then there is some X ′ ⊆ D such that JQ(a1)KtM,g,X′ = 1

and JQ(a2)KtM,g,X′ = 0. Thus, there is some a4 ∈ X ′ : JQ(a4)KcM,g,X′ = 1, and

a4 ∼X′

Q a1. Now consider X ′ ∪ {a3}. By the AAA and the assumption that

Ja1 >Q a2KtM,g,X = 1 and Ja2 >Q a3KtM,g,X = 1, JQ(a2)KcM,g,X∪{a3} = 0 and

JQ(a3)KcM,g,X′∪{a3} = 0.

Case 1: X ′ ∪ {a3} = X ′. Since JQ(a3)KtM,g,X′ = 1 and JQ(a2)KtM,g,X′ = 0,

by theorem 2, JQ(a3)KtM,g,X′ = 0, and Ja1 >Q a3KtM,g,X = 1. X Case 2:

X ′ ⊂ X ′ ∪ {a3}. Since X ′ ⊂ X ′ ∪ {a3} and a4 ∼X
Q a1, by G1, a4 ∼X′∪{a3}

Q a1.

By the AAA, JQ(a4)KcM,g,X′∪{a3} = 1. So JQ(a1)KtM,g,X∪{a3} = 1. Suppose,

for a contradiction that JQ(a3)KtM,g,X′∪{a3} = 1. Then there is some a5 ∈
X ′ ∪ {a3} : JQ(a5)KcM,g,X′∪{a3} = 1 and a5 ∼X′∪{a3}

Q a3. By assumption and

since JQ(a2)KcM,g,X′ , by MD, Ja5 >Q a2KtM,g,X = 1 and Ja2 >Q a3KtM,g,X = 1. So

by T- No Skipping, a5 ∼X′∪{a3}
Q a2. Since JQ(a2)KtM,g,X′ = 0, a5 6∼X′

Q a2. So by

G2, since X ′∪{a3}−X ′ = {a3}, a5 6∼X′∪{a3}
Q a3. ⊥. So JQ(a3)KtM,g,X′∪{a3} = 0,

and Ja1 >Q a3KtM,g,X = 1. X ut

Lemma 5. Almost Connectedness. For all X ⊆ D and a1, a2 ∈ D, if Ja1 >Q

a2KtM,g,X = 1 then for all a3 ∈ D, either Ja1 >Q a3KtM,g,X = 1 or Ja3 >Q

a2KtM,g,X = 1.

Proof. Let Ja1 >Q a2KtM,g,X = 1 and Ja3 >Q a2KtM,g,X = 0 to show Ja1 >Q

a3KtM,g,X = 1.

Case 1: JQ(a1)KcMg,D = 1. Since Ja1 >Q a2KtM,g,X = 1 and Ja3 >Q a2KtM,g,X = 0,

JQ(a3)KcM,g,D = 0. So Ja1 >Q a3KcM,g,X = 1, and, by lemma 1, Ja1 >Q a3KtM,g,X =

1. X Case 2: JQ(a1)KcMg,D = 0. Since Ja1 >Q a2KtM,g,X = 1, there is some

X ′ ⊆ D such that JQ(a1)KtM,g,X′ = 1 and JQ(a2)KtM,g,X′ = 0. So there is some

a4 ∈ X ′ : JQ(a4)KcM,g,X′ = 1 and a4 ∼X′

Q a1. Now consider X ′ ∪ {a3}. Since



Ja3 >Q a2KtM,g,X = 0, JQ(a1)KcM,g,X′∪{a3} = 0 and JQ(a2)KcM,g,X′∪{a3} = 0

and JQ(a3)KcM,g,X′∪{a3} = 0. Since a4 ∼X′

Q a1, by G1, a4 ∼X′∪{a3}
Q a1 and by

the AAA, JQ(a4)KcM,g,X′∪{a3} = 1. So, by definition 21, JQ(a1)KtM,g,X′∪{a3} =

1. Now suppose for a contradiction that JQ(a3)KtM,g,X′∪{a3} = 1. Then there

is some a5 ∈ X ′ ∪ {a3} : JQ(a5)KcM,g,X′∪{a3} = 1 and a5 ∼X′∪{a3}
Q a3. Since

JQ(a5)KcX′∪{a3} = 1 and JQ(a2)KcX′∪{a3} = 0, Ja5 >Q a2KcM,g,X = 1; so by lemma

1, Ja5 >Q a2KtM,g,X = 1. Furthermore, since, by assumption, Ja3 >Q a2KtM,g,X =

0, Ja2 ≥Q a3KtM,g,X = 1. Since Ja5 ≥Q a2KtM,g,X = 1 and Ja2 ≥Q a3KtM,g,X = 1,

and a5 ∼X′∪{a3}
Q a3, by Tolerant No Skipping, a5 ∼X′∪{a3}

Q a2. However, since

JQ(a2)KtM,g,X′ = 0, and by the AAA, JQ(a5)KcM,g,X′ = 1, a5 6∼X′

Q a2. Since

X ′ ⊂ X ′ ∪ {a3} and a5 ∼X′∪{a3}
Q a2, by G2, there is some a6 ∈ X ′ ∪ {a3} −X ′

such that a6 6∼X′∪{a3}
Q a3. Since X ′ ∪ {a3} −X ′ = {a3}, a5 6∼X′∪{a3}

Q a3. ⊥ So

JQ(a3)KtM,g,X′∪{a3} = 0 and Ja1 >Q a3KtM,g,X = 1. X ut

We can now prove the main theorem of the paper:

Theorem 3. If Q is an absolute adjective, <t
Q is a strict weak order.

Proof. Immediate from lemmas 3, 4 and 5. ut


