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Abstract. Formal semantics and distributional semantics offer comple-
mentary strengths in capturing the meaning of natural language. As such,
a considerable amount of research has sought to unify them, either by
augmenting formal semantic systems with a distributional component, or
by defining a formal system on top of distributed representations. Arriv-
ing at such a unified framework has, however, proven extremely chal-
lenging. One reason for this is that formal and distributional semantics
operate on a fundamentally different ‘representational currency’: formal
semantics defines meaning in terms of models of the world, whereas distri-
butional semantics defines meaning in terms of linguistic co-occurrence.
Here, we pursue an alternative approach by deriving a vector space model
that defines meaning in a distributed manner relative to formal mod-
els of the world. We will show that the resulting Distributional Formal
Semantics offers probabilistic distributed representations that are also
inherently compositional, and that naturally capture quantification and
entailment. We moreover show that, when used as part of a neural net-
work model, these representations allow for capturing incremental mean-
ing construction and probabilistic inferencing. This framework thus lays
the groundwork for an integrated distributional and formal approach to
meaning.

Keywords: Distributionality - Compositionality + Probability -
Inference - Incrementality

1 Introduction

In traditional formal semantics, the meaning of a logical expression is typically
evaluated in terms of the truth conditions with respect to a formal model M,
in which the basic meaning-carrying units (i.e., the basic expressions that are
assigned a truth value) are propositions [14]. The meaning of a linguistic expres-
sion, then, is defined in terms of the truth conditions its logical translation poses
upon a formal model. Critically, these truth conditions define meaning in a seg-
regated manner; distinct propositions obtain separate sets of truth conditions.
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As a result, the relation between individual meanings is not inherently part of
their truth-conditional interpretation, but rather follows indirectly from mod-
els satisfying these conditions. The core strength of the distributional semantics
approach, by contrast, is that (word) meanings are defined in relation to each
other, thus directly capturing semantic similarity [18]. It has, however, proven
extremely difficult to incorporate well-known features from formal semantics
(e.g., compositionality, entailment, etc.) into a distributional semantics frame-
work [3] (but cf. [1,2,7,16,20]).

Here, we take the inverse approach: We introduce distributionality into a for-
mal semantic system, resulting in a framework for Distributional Formal Seman-
tics (DFS). This framework is based on the cognitively inspired meaning repre-
sentations developed by Golden and Rumelhart [15] and adapted by Frank et al.
[12]. In DFS, insights from formal and distributional semantics are combined by
defining meaning distributionally over a set of logical models: individual mod-
els are treated as observations, or cues, for determining the truth conditions
of logical expressions—analogous to how individual linguistic contexts are cues
for determining the meaning of words in distributional semantics. Based on a
set of logical models M that together reflect the state of the world both truth-
conditionally and probabilistically (i.e., reflecting the probabilistic structure of
the world), and a set of propositions P, we can define a vector space for DFS:
Smxp. The meaning of a proposition is defined as a vector in Sy(xp, which
reflects its truth or falsehood relative to each of the models in M. The resulting
meaning vector captures the probabilistic truth conditions of individual proposi-
tions indirectly by identifying the models that satisfy the proposition. Critically,
the distributional meaning of individual propositions is defined in relation to all
other propositions; propositions that have related meanings will be true in many
of the same models, and hence have similar meaning vectors. In other words, the
meaning of a proposition is defined in terms of the propositions that it co-occurs
with—or, to paraphrase the distributional hypothesis formulated by Firth [10]:
“You shall know a proposition by the company it keeps”.

In what follows, we will show how a well-defined vector space Syixp can
be derived from a high-level description of the structure of the world, how the
resulting meaning space offers distributed representations that are probabilis-
tic and inferential, and how it captures basic concepts from formal semantics,
such as compositionality, quantification and entailment. As a proof-of-concept,
we present a computational (Prolog) implementation of the DFS framework.!
Finally, we will show how the DFS representations can be employed in a neural
network model for incremental meaning construction. Crucially, we will show
how this approach to incremental meaning construction allows for the represen-
tation of sub-propositional meaning by exploiting the continuous nature of the
meaning space.

! prs-TOOLS is publicly available at http://github.com/hbrouwer/dfs-tools under the
Apache License, version 2.0.
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2 A Framework for Distributional Formal Semantics

In DFS, the meaning of a proposition p € P is defined as a vector v(p) in Spxp,
such that each unit corresponds to a M € M, and is assigned a 1 iff M satisfies
p, and a 0 otherwise. Consequently, for Syixp to be well-defined, the set of
models M that constitutes the meaning space must capture the relevant truth
conditions for each proposition p € P, and conversely, the set of propositions P
must contain all propositions that are captured by each model M € M. Beyond
being well-defined, the meaning space Sy(xp should capture the structure of the
world. First of all, the world can enforce hard world knowledge constraints on the
co-occurrence of propositions; for instance, certain combinations of propositions
may never co-occur, that is, never be simultaneously satisfied within the same
model (e.g., a person cannot be at two different places). Secondly, there may
be probabilistic constraints on the co-occurrence of propositions; a proposition
p may co-occur more frequently with p’ than with p” (for some p,p’,p" € P),
that is, there should be more models M € M that satisfy p A p’ than models
M' € M satisfying p A p”’ (e.g., one prefers reading in bed over reading on the
sofa). For Sy(xp to reflect our high-level knowledge about the structure of the
world regarding the probabilistic truth-conditions of each proposition p € P,
we thus need its constituent set of models M to approximate this knowledge.
One way of arriving at a satisfactory Spqxp is to induce this set of models by
sampling each model M € M from a high-level specification of the structure of
the world.

2.1 Sampling Sy xp

For a given set of propositions P, there are theoretically 27 possible models. Hard
constraints in the world rule out any model that satisfies illegal combinations
of propositions, while probabilistic constraints require the set of models M that
constitutes Spqxp to reflect that a proposition p may co-occur more frequently
with p’ than with p” (for some p,p’,p” € P). Hence, the goal is to find a set
of models M such that each M € M satisfies all hard constraints, and M as a
whole reflects the probabilistic structure of the world. To this end, we employ
an inference-driven, non-deterministic sampling algorithm (inspired by [13]) that
stochastically generates models from a set of hard and probabilistic co-occurrence
constraints on the propositions P.

As in traditional formal semantics, a model M € M is defined as the tuple
(Unr, V), where Uyps defines the universe of M, and V), is the interpretation
function that assigns (sets of) entities to the individual constants and properties
that constitute P. Given the set of constants c; . .. ¢, defined by P, the universe
of each M € M is defined as Up; = {e1...e,}, and the interpretation function
is initialized to map each constant onto a unique entity: Vas(c;) = e;. The next
step is to stochastically define an interpretation for all propositions in P, while
taking into account hard and probabilistic constraints on world structure. To
this end, we start out with the initialized interpretation function, which will
be incrementally expanded with the interpretation of individual propositions.
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We call this interpretation function the Light World? (LVs), to which will be
assigned all propositions that are satisfied in M. To facilitate the incremental,
inference-driven construction of M, we will in parallel construct a Dark World
interpretation function (DVjy), to which will be assigned all propositions that
are not satisfied in M. Finally, we assume hard constraints to be represented by
a set of well-formed formulas C, while probabilistic constraints are represented
by a function Pr(¢) that assigns a probability to a property ¢. A model M is
then sampled by iterating the following steps:

1. Given the constants ¢; ... ¢, defined by P, let Upy = {e1...en}, LV (c;) = e;
and DVis(¢;) = e;.
2. Randomly select a proposition ¢ = P(t1,...,t,) from P that is not yet
assigned in LVy; or DVyy.
3. Let LV}, be the function that extends LVj; with the interpretation of ¢, such
that (t1,...,tn) € LV{,(P).
4. Let Light World Consistency LWC = T iff each constraint in C is either
satisfied by (Ups, LVy,), or if its complement? is not satisfied by (Unr, DVis).
5. Let DVJ, be the function that extends DVj; with the interpretation of ¢ ,
such that (¢1,...,t,) € DV{,(P).
6. Let Dark World Consistency DWC = T iff each constraint in C is either
satisfied by (Ups, LVas), or if its complement is not satisfied by (Uar, DV},).
7. Provided the outcome of step 4 and step 6:
~ LWC AN DWC: ¢ can be true in both worlds, let LVy, = LV, with
probability Pr(¢) and DV, = DV}, with probability 1 — Pr(¢);
- LWC A-DWC": ¢ can be inferred to the Light World, let LVy; = LV ;
— 2LWC ADWC: ¢ can be inferred to the Dark World, let DVy; = DV};;
— 2 LWCA=DWC": ¢ cannot be inferred to either world, meaning the model
thus far is inconsistent, and sampling is restarted from step 1.*
Repeat from step 2 until each proposition in P is assigned in LVjy; or DV),.
9. If LV, satisfies each constraint in C, LVj; will be the interpretation function
of the resultant model M = (Ups, LViy).

*®

Repeating this sampling procedure n times will yield a set of models M with
cardinality |M| = n. Crucially, while this procedure only samples one model at
a time, the probabilistic assignment of non-inferrable propositions to the Light
World in step 7 will assure that each probability Pr(¢) is approximated by the
fraction of models in M that satisfy ¢, provided that M is of sufficient size.
An efficient implementation of this sampling algorithm is available as part of
DFS-TOOLS (see Footnote 1).

2 ¢f. The Legend of Zelda: A Link to the Past (Nintendo, 1992).

3 While a constraint is a well-formed formula that specifies its truth-conditions relative
to the Light World (LVas), its complement specifies its falsehood-conditions relative
to the Dark World (DVay); e.g., the Light Word constraint Va.sleep(z) can be proven
to be violated if Jx.sleep(x) is satisfied in the Dark World. See the appendix for a
full set of translation rules.

4 The sampling of inconsistent models strongly depends on the interdependency of
the constraints in C and can be prevented by defining C in such a way that all
combinations of propositions are explicitly handled.
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2.2 Formal Properties of Syxp

Compositionality. A well-defined semantic space Sypqxp defines the meaning
vectors for a set of individual propositions P relative to a set of logical models
M. Given that the meaning vector v(p) of a proposition p € P defines its truth
values relative to M, we can define the negation —p as the vector that assigns 1
to all M € M such that p is not satisfied in M, and 0 otherwise:

v;(-p) = 1iff M; ¥ p for 1 <i < | M|

The meaning of the conjunction p A g, given p,q € P, is defined as the vector
v(p A q) that assigns 1 to all M € M such that M satisfies both p and ¢, and 0
otherwise:

vi(pAq)=1iff M; Epand M; E g for 1 <i<|M|

Using the negation and conjunction operators, the meaning of any other logical
combination of propositions in the semantic space can be defined, thus allow-
ing for meaning vectors representing expressions of arbitrary logical complexity.
Critically, these operations also allow for the definition of quantification. Since P
fully describes the set of propositions expressed in M, the (combined) universe
of M (Up = {us,...,uy}) directly derives from P. Universal quantification,
then, can be formalized as the conjunction over all entities in Upy:

v;(Vzp) = 1iff M; F gla\ui] A ... A Pla\uy,] for 1 <i < |M]

Existential quantification, in turn, is formalized as the disjunction over all enti-
ties in Upg:

v;(Jzg) =1 M; E la\ur] V...V ¢z\u,] for 1 <i < |M]

The vectors from Syqxp are thus fully compositional at the propositional level.
Furthermore, in Sect. 3, we will show how sub-propositional meaning can be
constructed by incrementally mapping expressions onto vectors in Syxp-

Probability. The semantic space Sy xp is inherently probabilistic, as the mean-
ing vectors for individual propositions in Sy(xp inherently encode their prob-
ability. Given a set of models M that reflects the probabilistic nature of the
world, the probability of p can be defined by the number of models that satisfy
p, divided by the total number of models:

P(p) = {M € M | M F p}|/|M|

Thus, propositions that are true in a large set of models will obtain a high
probability. Given the notion of compositionality discussed above, the probability
of aAb can be defined as the probability of the conjunctive vector v(aAb), where
a and b may be atomic propositions in P or any arbitrarily complex combination
thereof. Finally, the conditional probability of b given a is defined as:

P(bla) = P(a Ab)/P(a)
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Inference. As described above, the meaning of individual propositions in Syxp
is defined in terms of their co-occurrence with other propositions. As a result,
the vector representations inherently encode how propositions, and logical com-
binations thereof, are logically related to each other. Entailment, for instance, is
reflected in Spqxp by means of vectors with overlapping truth values; (complex)
proposition a entails b (a F b) iff b is satisfied by all models that satisfy a. Based
on the definition of conditional probability described above, we can moreover
formalize probabilistic inference. Intuitively, a high conditional probability of b
given a would indicate that b can be inferred from a, since b is satisfied by a large
number of models that satisfy a. However, this conditional probability alone is
insufficient, as inference requires quantifying the degree to which a increases (or
decreases) the probability of b above and beyond its prior probability P(b). We
therefore adopt a score for logical inference that factors out this prior probabil-
ity [11]:
, [ RREO it P(bla) > P(b)
nf(b, @) = § poja)—Pb) -
0 otherwise

This score yields a value ranging from +1 to —1, where 41 indicates that (com-
plex) proposition b is perfectly inferred from a (i.e., a entails b; a F b), whereas a
value of —1 indicates that the negation of b is perfectly inferred from a (a & —b).
Any inference score in between these extremes reflects probabilistic inference in
either direction. In what follows, we will employ this notion of inference in a
neural network model of incremental meaning construction.

3 Incremental Meaning Construction

The meaning space Spqxp defines meaning vectors for all propositions in P, and
using the compositional operations described above, vectors can be derived for
complex logical combinations of propositions. The meaning space also naturally
captures sub-propositional meaning. That is, while vectors representing propo-
sitional meaning are binary—reflecting truth- and falsehood within models in
M-—the meaning space itself is continuous, which means that it also captures
meanings that are not directly expressible as (combinations of) propositions.
We can exploit this continuous nature of Sy(xp to model the word-by-word,
context-dependent construction of (sentence-final) propositional meaning. That
is, the meaning of a sub-propositional expression is a real-valued vector that
defines a point in the vector space, which is positioned in between those points
that instantiate the propositional meanings that the expression pertains to. In
contrast to traditional semantic approaches, the DFS approach does not define
an operation that simply combines the sub-propositional meanings of two sub-
sequent expressions. Rather, sequences of words ws ...w, define a trajectory
(v1,...,v,) through Spqxp, where each v; represents the (sub-propositional)
meaning induced by the sequence of words ws ... w;; that is, each word w;
induces a meaning in the context of the meaning assigned to its preceding
words w; ...w;_1. Sub-propositional meaning thus critically derives from the
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output (100 units)
[ DFS representation ]

A

hidden (70 units)
(internal representation at t)

T A

input (21 units)

1 context (70 units)

1 (internal representation at t-7) [ localist word representation ]

Fig. 1. Simple Recurrent neural Network. Boxes represent groups of artificial neurons,
and solid arrows between boxes represent full projections between the neurons in a
projecting and a receiving group. The dashed lines indicate that the CONTEXT layer
receives a copy of the activation pattern at the HIDDEN layer at the previous time-step.
See text for details.

incremental, context-dependent mapping from word sequences onto (complex)
propositional meanings. One piece of machinery that is particularly good at
approximating such an incremental, context-dependent mapping is the Simple
Recurrent neural Network (SRN) [8]. Below, we describe an SRN for incremen-
tal meaning construction (cf. [22]) and show how it navigates the meaning space
on a word-by-word basis, allowing for incremental (sub-propositional) meaning
construction and inferencing.

3.1 Model Specification

We employ an SRN consisting of three groups of artificial logistic dot-product
neurons: an INPUT layer (21 units), HIDDEN layer (70), and OUTPUT layer (100)
(see Fig.1). Time in the model is discrete, and at each processing time-step
t, activation flows from the INPUT through the HIDDEN layer to the ouTpPUT
layer. In addition to the activation pattern at the INPUT layer, the HIDDEN layer
also receives its own activation pattern at time-step ¢t — 1 as input (effectuated
through an additional CONTEXT layer, which receives a copy of the activation
pattern at the HIDDEN layer prior to feedforward propagation). The HIDDEN
and the OUTPUT layers both receive input from a bias unit (omitted in Fig. 1).
We trained the model using bounded gradient descent [19] to map sequences
of localist word representations constituting the words of a sentence, onto a
meaning vector from Sy xp representing the meaning of that sentence.

The sentences on which the model is trained describe situations in a confined
world. This world is defined in terms of two persons (p € {john,ellen}), two
places (z € {restaurant,bar}), and two types of food (f € {pizza, fries}) and
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drinks (d € {wine,beer}), which can be combined using the following 7 pred-
icates: enter(p,x), ask_menu(p), order(p,f/d), eat(p,f), drink(p,d), pay(p) and
leave(p). The resulting set of propositions P (|P| = 26) fully describes the world.
A meaning space was constructed from these atomic propositions by sampling
a set of 10K models M (using the sampling algorithm described in Sect. 2.1),
while taking into account world knowledge in terms of hard and probabilistic
constraints on proposition co-occurrence; for instance, a person can only enter a
single place (hard), and john prefers to drink beer over wine (probabilistic). In
order to employ meaning vectors derived from this meaning space in the SRN,
we algorithmically selected a subset M’ consisting of 100 models from M, such
that M’ adequately reflected the structure of the world (using the algorithm
described in [22]). Situations in the world were described using sentences from
a language L consisting of 21 words. The grammar of £ generates a total of 124
sentences, consisting of simple (NP VP) and coordinated (NP VP and VP) sen-
tences. The sentence-initial NPs may be john, ellen, someone, or everyone, and
the VPs map onto the aforementioned propositions. The corresponding meaning
vectors for the sentences in £ were derived using the compositional operations
described in Sect. 2.2 (where someone and everyone correspond to existential and
universal quantification, respectively). The model was trained on the full set of
sentences generated by £, without any frequency differences between sentences.’

Prior to training, the model’s weights were randomly initialized using a range
of (—.5,+.5). Each training item consisted of a sentence (a sequence of words
represented by localist representations) and a meaning vector representing the
sentence-final meaning. For each training item, error was backpropagated after
each word, using a zero error radius of 0.05, meaning that no error was backprop-
agated if the error on a unit fell within this radius. Training items were presented
in permuted order, and weight deltas were accumulated over epochs consisting
of all training items. At the end of each epoch, weights were updated using a
learning rate coefficient of 0.1 and a momentum coefficient of 0.9. Training lasted
for 5000 epochs, after which the mean squared error was 0.69. The overall per-
formance of the model was assessed by calculating the cosine similarity between
each sentence-final output vector and each target vector for all sentences in the
training data. All output vectors had the highest cosine similarity to their own
target (mean = .99; sd = .02), indicating that the model successfully learned
to map sentences onto their corresponding semantics. We moreover computed
how well the intended target could be inferred from the output of the model:
inf(vm,«get, voutput).f‘ The average inference score over the entire training set was
0.88, which means that after processing a sentence, the model almost perfectly
infers the intended meaning of the sentence.

5 The specification of the world described here, including the definition of the lan-
guage L, is available as part of DFS-TOOLS (see Footnote 1).
5 For real-valued vectors, we can calculate the probability of vector v(a) as follows:

Pla) =32 vi(a)/|M].
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leave(john)
ohn_left

BHE SN RE Bler

drink(john;beer)

enterjohn,bar)

or _er@'r?h_ . )
\ at(john,pi john | ordered order(john,fries)

eaf(john,fries)

order(john,wine)
\dr\nk(john,wine)

Fig. 2. Visualization of the meaning space into three dimensions (using multidimen-
sional scaling; MDS) for a subset of the atomic propositions (those pertaining to john).
Grey points represent propositional meaning vectors. Coloured points and arrows show
the word-by-word navigational trajectory of the model for the sentences “john ordered
beer” and “john left”. See also Footnote 7. (Colour figure online)

3.2 Incremental Inferencing in DFS

On the basis of its linguistic input, the model incrementally constructs a mean-
ing vector at its OUTPUT layer that captures sentence meaning; that is, the
model effectively navigates the meaning space Sy(xp on a word-by-word basis.
Figure2 provides a visualization of this navigation process. This figure is a
three-dimensional representation of the 100-dimensional meaning space (for
a subset of the atomic propositions), derived using multidimensional scaling
(MDS). The grey points in this space correspond to propositional meaning vec-
tors. As this figure illustrates, meaning in Spqxp is defined in terms of co-
occurrence; propositions that co-occur frequently in M (e.g., order(john,wine)
and drink(john,wine)) are positioned close to each other in space.” The
coloured points show the model’s word-by-word output for the sentences “john
ordered beer” and “john left”. The navigational trajectory (indicated by the
arrows) illustrates how the model assigns intermediate points in meaning space
to sub-propositional expressions, and instantiates propositional meanings at

" Multidimensional scaling from 100 into 3 dimensions necessarily results in a signif-
icant loss of information. Therefore, distances between points in the meaning space
shown in Fig. 2 should be interpreted with care.
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Word-by-word inference

1.0 @ enter(john,restaurant)
® enter(john,bar)
order(john,beer)
# order(john,wine)
5. = drink(john,wine)
pay(ellen)

0.0-

Inference score

-0.5-

-0

-
P

jdhn entered the restaurant and ordered wine

Fig. 3. Word-by-word inference scores of selected propositions for the sentence “John
entered the restaurant and ordered wine” with the semantics: enter(john, restaurant) A
order(john,wine). At a given word, a positive inference score for proposition p indi-
cates that p is positively inferred to be the case; a negative inference score indicates
that p is inferred not to be the case (see text for details). (Colour figure online)

sentence-final words. For instance, at the word “john”, the model navigates
to a point in meaning space that is in between the meanings of the proposi-
tions pertaining to john. The prior probability of propositions in Syxp (“world
knowledge”), as well as the sentences on which the model was trained (“lin-
guistic experience”) together determine the model’s trajectory through meaning
space. For instance, while the model was exposed to the sentences “john ordered
beer” and “john ordered wine” equally often, the vector for the expression “john
ordered” is closer to order(john,beer) than order(john,wine), because the former
is more probable in the model’s knowledge of the world (see [22] for an elaborate
investigation of the influence of world knowledge and linguistic experience on
meaning space navigation).

Using the inference score described in Sect. 2.2, we can moreover study what
the model ‘understands’ at each word of a sentence (i.e., inf(b,a), where b is
the vector of a proposition of interest, and a the output vector of the SRN).
Figure 3 shows the word-by-word inference scores for the sentence “john entered
the restaurant and ordered wine” with respect to 6 propositions. First of all,
this figure shows that by the end of the sentence, the model has understood
its meaning: the inference scores of enter(john,restaurant) and order(john,wine)
are both = 1 at the sentence-final word. What is more, it does so on an incre-
mental basis: at the word “restaurant”, the model commits to the inference
enter(john,restaurant), which rules out enter(john,bar) since these do not co-
occur in the world (P(enter(john,restaurant) A enter(john,bar)) = 0). At the
word “ordered”, the model finds itself in state that is closer to the infer-
ence that order(john,beer) than order(john,wine), as John prefers beer over
wine (P(order(john,beer)) = 0.81 > P(order(john,wine)) = 0.34). However, at
the word “wine” this inference is reversed, and the model understands that
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order(john,wine) is the case, and that order(john,beer) cannot be inferred. In
addition, the word “wine” also leads the model to infer drink(john,wine), even
though this proposition is not explicitly part of the semantics of the sentence.
This happens because the world stipulates that given that John ordered wine, it
is likely that he also drank it (P(drink(john,wine) | order(john,wine)) = 0.88).
Finally, no significant inferences are drawn about the unrelated proposition
pay(ellen).

4 Discussion

The DFS framework defines the meaning of a proposition p in terms of models
that satisfy it and those that do not. Hence, the framework relies on finding
a set of models M that truth-conditionally and probabilistically capture the
structure of the world with respect to a set of propositions P. Here, we focused
on how this space Sy(xp can be induced from a high-level description of the
structure of the world. We would like to emphasize, however, that none of the
described formal properties of the meaning space hinges upon this sampling pro-
cedure. An alternative approach towards arriving at Syqxp, for instance, is to
induce it empirically from a semantically annotated corpus (e.g., [4]) or from
crowd-sourced human data on propositional co-occurrence (e.g., [23]). The only
requirements are that the resultant space Sy« p is well-defined, and that it accu-
rately approximates the structure of the world in terms of hard and probabilistic
constraints on propositional co-occurrence.

DFS representations are inherently compositional at the level of proposi-
tions in that atomic propositions can be compositionally combined into complex
propositions. At the sub-propositional level, however, meaning is constructed
by incrementally navigating Sy xp. Arriving at the meaning of “john ordered”
does not simply involve combining the meaning of “john” with the meaning
of “ordered”, but rather entails the context-dependent integration of the word
“ordered” into the meaning representation constructed after processing “john”
(cf. [5]). Crucially, this is possible due to the continuous nature of Sy(xp. Hence,
in the DFS framework, compositionality at the propositional level and incre-
mentality at the sub-propositional level interact in context-dependent meaning
construction.

The relatively simple neural network model presented here served to illustrate
the incremental meaning construction procedure. More sophisticated models,
however, instantiating earlier formulations of the DFS framework (cf. [12]), have
already highlighted various other interesting properties of the approach. For
one, while the current model was trained and tested on the same sentence-
semantics pairs, other models have shown generalization to unseen sentences
and semantics, in both comprehension [11] and production [6]. Crucially, this
semantic systematicity derives from the structure of the world as encoded by
the meaning space. Moreover, since in a comprehension model—such as the one
described here—each word serves as a contextualized cue for meaning space
navigation, a relatively simple SRN architecture (as compared to more complex
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architectures such as Long Short-Term Memory, LSTM, [17] networks), suffices
for this systematicity to manifest. Secondly, other models have explored the
dynamics of meaning-space navigation using information-theoretic notions such
as surprisal and entropy [13,22].

In DFS, there are two levels at which semantic phenomena can be modeled:
the level of the meaning space Syqxp, and the mapping from words onto points
within this meaning space. Starting with the meaning space itself, one could
explore different schemes for encoding the atomic propositions, for instance to
explicitly capture tense and aspect, or Davidsonian event semantics. Moreover,
by varying temporally-dependent proposition co-occurrence within and across
models, we obtain different encodings of time within Sy(xp (see [22] for a within-
model approach). At the level of the mapping between words and points in Sy(xp
space, in turn, the DF'S framework allows for different ways to capture discourse-
level phenomena, such as modality, reference, information structure, and implica-
ture. Crucially, the fact that inference directly follows from incremental semantic
meaning construction circumvents the need for a separate pragmatic inference
mechanism. This thus blurs the strict line between semantics and pragmatics,
thereby directly implementing recent theorizing in formal semantics [21].

While the DFS framework combines formal and distributional approaches to
meaning, we take the framework to be complementary to lexically-driven distri-
butional semantics (e.g., LSA; [18]). In DFS, the ‘representational currency’ is
propositions, whereas in distributional semantics it is words. As a result, DFS
allows us to model similarity at the propositional level (e.g., order(john, beer) is
similar to drink(john,beer) as they co-occur in M), while distributional seman-
tics models lexical similarity (“beer” is similar to “wine” as they occur in simi-
lar linguistic contexts; e.g., [9]). Crucially, the DFS approach and distributional
semantics thus capture different notions of semantic similarity: while the lat-
ter offers representations that inherently encode feature-based lexical similar-
ity between words, the former provides representations instantiating the truth-
conditional similarity between propositions. The complementary nature of these
meaning representations is underlined by recent advances in the neurocognition
of language, where evidence suggests that lexical retrieval (the mapping of words
onto lexical semantics) and semantic integration (the integration of word mean-
ing into the unfolding representation of propositional meaning) are two distinct
processes involved in word-by-word sentence processing [5]. Crucially, this per-
spective on language comprehension suggests that compositionality is only at
play at the level of propositions, thus eschewing the need for compositionality
at the lexical level.

5 Conclusion

The DF'S framework offers a novel approach to distributional semantics, by defin-
ing the meaning of propositions distributionally over a set of formal models. As
a consequence, the approach inherits the entire apparatus of (first-order) logic
that powers formal semantics, while offering contextualized and probabilistic
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distributed meaning representations similar to distributional semantics. Cru-
cially, the meaning representations differ from those from distributional seman-
tics in that they offer probabilistic information that reflects the state of the
world, rather than linguistic co-occurrence, thereby offering a complementary
perspective on meaning representation. To illustrate the approach, we have
shown how the DFS meaning space can be derived from a high-level specifi-
cation of the world, and how it naturally captures well-known concepts from
formal semantics, such as compositionality and entailment. Moreover, when
employed in an incremental model of meaning construction, it naturally captures
sub-propositional meaning and inferencing. As such, we believe that the DFS
framework—implemented by DFs-TOOLS—offers a powerful synergy between for-
mal and distributional approaches that paves the way towards novel investiga-
tions into formal meaning representation and construction.

Appendix

The complement of any well-formed formula is found by recursively applying the
following translations, where ¢’ is the complement of ¢:

¢ =g PYY = (¢ AY)V (= A=) Twd o Vg
PAY = VY P g VY Va.¢ — Jr.¢'
VY= gAY o (G AY)V(PA)  p
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