

# Linmin Zhang<sup>1</sup> & Jia Ling<sup>2</sup> (linmin.zhang@nyu.edu) Departments of Linguistics<sup>1</sup> and Biology<sup>2</sup>, New York University

## **Take-home messages**

We claim that **not** and **few**/ little represent two different kinds of **negation** operators: While **not** takes a **set** as argument and returns its complement, few/little takes an interval as argument and returns its **inverse** with regard to a certain **neutral**.



## **Basic facts about few/little**

- (1) When Aristotle discusses the nor few, ...
- (2) She is neither tall nor short.
- does.
- (4) John is less tall than Mary is.

 $\therefore \llbracket (1) \rrbracket \Leftrightarrow \operatorname{height}(\operatorname{John}) \subseteq \iota D[D - [D_{\operatorname{Mary_lower}}, D_{\operatorname{Mary_upper}}] = [3'', 3'']]$  $\llbracket \text{more/-er} \rrbracket_{\langle dt \rangle} \stackrel{\text{def}}{=} D$  such that  $D \subseteq (0, +\infty)$  $\Leftrightarrow$  height(John)  $\subseteq [D_{\text{Mary_upper}} + 3'', D_{\text{Mary_lower}} + 3'']$ . It is defined when  $[[\text{than}]]_{\langle dt, \langle dt, dt \rangle \rangle} \stackrel{\text{def}}{=} \lambda D_{\text{standard}} \cdot \lambda D_{\text{differential}} \cdot \iota D[D - D_{\text{standard}} = D_{\text{differential}}]$  $D_{\text{Mary_upper}} + 3'' \le D_{\text{Mary_lower}} + 3''$ , i.e.,  $D_{\text{Mary_upper}} = D_{\text{Mary_lower}}$ . few/little<sub>operator(dt,dt)</sub>  $\stackrel{\text{def}}{=} \lambda D_{\text{positive}} \cdot \iota D[D_{\text{positive}} - D_{\text{neutral}} = D_{\text{neutral}} - D]$ In absolute constructions,  $D_{\text{neutral}}$  is a context-dependent gap; (2) John is at most 2" taller than every girl is. In comparatives,  $D_{\text{neutral}} = [0, 0]$ .

 $[[\operatorname{many}]]_{\langle dt \rangle} \stackrel{\text{def}}{=} \iota D[D - D_{\operatorname{gap}} = (0, +\infty)] = (D_{\operatorname{gap-upper bound}}, +\infty)$  $[\text{few/little}]_{\langle dt \rangle} \stackrel{\text{def}}{=} \text{few/little}[[\text{many}]], \because [[\text{many}]] - D_{\text{gap}} = (0, +\infty),$  $\therefore [\text{few/little}] = \iota D[D_{\text{gap}} - D = (0, +\infty)] = (-\infty, D_{\text{gap-lower bound}})$ 

 $\llbracket \text{tall} \rrbracket_{\langle dt, et \rangle} \stackrel{\text{def}}{=} \lambda D.\lambda x. [\text{height}(x) \subseteq D]$  $[ John is D_c tall ] \Leftrightarrow [ tall ] [ D_c ] [ John ] \Leftrightarrow height (John) \subseteq D_c$ 

## (1) John is **3**" taller than Mary is.

 $D_{\text{standard}} = [\text{Mary is (tall)}] = [\text{the}]\lambda D.\text{height(Mary)} \subseteq D$ i.e., Mary's height, or  $[D_{\text{Mary_lower}}, D_{\text{Mary_upper}}]$  $D_{\text{differential}} = [3'' - \text{er}] = (0, +\infty) \cap [3'', 3''] = [3'', 3'']$  $[3" -er than Mary is] = [than] [D_{Mary_lower}, D_{Mary_upper}] [3" -er]$  $= \iota D[D - [D_{\text{Mary_lower}}, D_{\text{Mary_upper}}] = [3'', 3'']]$ 

# Few and fewer

Traditional decompositional analysis:  $[\text{few/little}] \approx \text{not many}$  (e.g., Solt 2006) Two facts arguing against this analysis: There can be a gap between being few/little and being many/much.

question, whether we should have many or few friends, and determines that it is best to have **neither many** 

few/little + -er], i.e., the comparative use of *few/little*, remains unexplained.

(3) Lucy has more apples than Bill does, but Lucy has fewer pears than Bill

## **Proposal:** few/little<sub>op</sub> is an inverse-generating operator

### In absolute constructions, scalar antonyms denote intervals that are inverse with regard to gaps.

- Intuitively, as an operator, few/ **little**<sub>op</sub> turns *many* into *few*; it turns *tall* into *short*; it turns large into small .....
- Kennedy 1997/1999: "tall measures the height an object has; short measures the height an object does not have."

|            |        | Interval A |      |     |     |      | Inte |       |
|------------|--------|------------|------|-----|-----|------|------|-------|
|            |        |            |      |     |     |      |      |       |
| (          | )<br>- | 1          | 2    | 3   | 4   |      | 5    | 6     |
| <i>B</i> – | - A    | = [        | 5, 8 | ] — | [2, | , 4] | =    | 1     |
| A -        | ·B     | = [        | 2, 4 | ] — | [5, | 8]   | =    | -<br> |

# Formal analysis of few/littleop implemented with interval arithmetic

 $D_{\text{standard}} = [[\text{every girl is (tall})]] = [[\text{the}]] \lambda D.[\forall x[\text{girl}(x) \to \text{height}(x) \subseteq D]],$ i.e., the contextually most informative interval D such that every girl's height  $\clubsuit$ is contained in it, and it can be written as  $[D_{girls\_lower}, D_{girls\_upper}]$  $D_{\text{differential}} = [\![ \text{at most } 2'' \dots -\text{er} ]\!] = (0, +\infty) \cap (-\infty, 2''] = (0, 2'')$  $\therefore \llbracket (2) \rrbracket \Leftrightarrow \operatorname{height}(\operatorname{John}) \subseteq \iota D[D - [D_{\operatorname{girls\_lower}}, D_{\operatorname{girls\_upper}}] = (0, 2'']]$  $\Leftrightarrow \text{height}(\text{John}) \subseteq (D_{\text{girls\_upper}}, D_{\text{girls\_lower}} + 2'']$ It is defined when  $D_{\text{girls\_upper}} < D_{\text{girls\_lower}} + 2''$ .

(3) John is at most 2" less tall than every girl is.  $D_{\text{standard}} = |D_{\text{girls_lower}}, D_{\text{girls_upper}}|$  $D_{\text{differential}} = \text{few/little}[at most 2" -er]] = \text{few/little}(0, 2'']$  $= \iota D[(0, 2''] - [0, 0] = [0, 0] - D] = [-2'', 0)$  $\therefore [(3)] \Leftrightarrow \text{height}(\text{John}) \subseteq \iota D[D - [D_{\text{girls\_lower}}, D_{\text{girls\_upper}}] = [-2'', 0)]$  $\Leftrightarrow \text{height}(\text{John}) \subseteq [D_{\text{girls\_upper}} - 2'', D_{\text{girls\_lower}})$ It is defined when  $D_{\text{girls\_upper}} - 2'' < D_{\text{girls\_lower}}$ .



